
 # add to parent's Child list
 push(@{ $node->{'Parent'}->{'Children'} }, $node)
 if ($node->{'Parent'});

 $parent_stack[$depth] = $node;

 $node;
 } grep { ! m/^\s*$/ } @lines; # strip out blank lines

 return \@ftree;

 my @ftree = map {
 s/\s+$//; # trim ends;
 my $depth = s/\s{4}//g; # count number of indent blocks
 $depth++; # Start at one, though, rather than 0

 # create node structure
 my $node = {
 Name => $_,
 Depth => $depth,
 Parent => $parent_stack[$depth - 1],
 Children => [],
 };

 # add to parent's Child list
 push(@{ $node->{'Parent'}->{'Children'} }, $node)
 if ($node->{'Parent'});

 $parent_stack[$depth] = $node;

 $node;
 } grep { ! m/^\s*$/ } @lines; # strip out blank lines

 return \@ftree;

 croak “Category $node not found”
 unless ($found);

 my @ancestry = ($node);

 while ($found->{'Parent'}->{'Depth'} >= 1)
 {
 push @ancestry, $found->{'Parent'}->{'Name'};
 $found = $found->{'Parent'};

www.theperlreview.com Fall 2008 • 23

by Jeffrey Kegler
jeffreykegler@mac.com

Perl and Undecidability:
Perl Undecidable

This is the last of three articles based on a formal proof
of Perl’s unparseability that I originally presented on
Perlmonks. This winter I retired to the edge of a frozen

New England lake to work full-time on a parser generator, one
that would generate a parser from any grammar describable in
BNF. No such tool is in general use. I hope to create one. An
alpha version is on CPAN as Parse::Marpa.

Looking for test cases, I considered Perl 5. This led me to
Adam Kennedy’s PPI documentation and his suggestion of how
to prove that Perl parsing is not decidable. For some reason, it
was not immediately obvious to me that Adam was right. Perhaps
my optimism about parsing Perl 5 came from routinely walking
on water (frozen lake, remember). In any case, to be convinced,
I needed to work the proof out formally for myself.

I posted the result on Perlmonks. Since the Perl unparseability
proof is of practical interest rather than theoretical significance,
I tried to make my write-up accessible to readers who don’t care
about math for its own sake, but who do care about things that
are of practical use. The Perlmonks posting attracted enough
interest for me to be invited to write this series.

The first of these articles proved the Halting Theorem using
Perl notation. One purpose was to explain the techniques I would
need in the other two articles, but it should not be forgotten that
the Halting Theorem itself is an extremely practical and useful
result. Imagine for a moment that the existence of unsolvable
problems was known only to experts in universities. Imagine in
particular that it was not generally known that I can’t write a
program to find infinite loops in arbitrary code. A lot of time
would be wasted.

The second article dealt with Rice’s Theorem, a quick
and handy rule for spotting undecidable problems. Most
programmers know that there are undecidable problems, and
that some of them are practical questions. Less well known is
just how common undecidability is. Any non-trivial question
about what a Perl script does is undecidable, and the same is
true of all general-purpose programming languages.

n The proof by way of Rice’s Theorem --------------------
Perl is unusual among general-purpose languages in that

not just Perl’s run phase behavior, but also its parsing is, in the
general case, undecidable. The second article contained a Perl
unparseability proof. The proof used Rice’s Theorem, which
had several advantages.

1. It was short and quick.

2. It is closest to how the proof would look in a
journal if it were a publishable result. (An academic
math journal would not print this result because the
referees would consider it obvious. They would also
reject it because practical programming languages
can have limited lifespans, and the journals want
results that will be relevant and readable, decades
from now.)

3. Using Rice’s Theorem, the second article also
proved that a wide variety of other questions about
Perl were undecidable, showing that the situation
with Perl parsing and the Halting Question is far
from rare.

The disadvantage of using Rice’s Theorem is that it is a bit
of a “black box”. It might leave me without any feeling for why
Perl is not in general parseable.

This article presents two more proofs. Each lifts the cover of
the black box. The first is direct, that is, it avoids the traditional
approach of reduction to the Halting Theorem. Instead it
assumes the existence of a general solution to Perl parsing
and uses an example Perl script to show that this assumption
simply can’t be true. The second proof in this article takes the
traditional approach, showing that a general solution to Perl
parsing requires a general solution to the Halting Question,
which is known (and which was proved in the first article of
this series) to be undecidable.

Both the proofs in this article employ a reduction to absurdity
—they assume something, and show that the assumption creates
a contradiction. This constitutes a proof that the assumption
must be false, and that therefore the opposite of the assumption
must be true. Ordinary reasoning uses this kind of logic all the
time (“If this jerk knows so much about startups, how come he
needs us to pick up the tab for lunch?”). But for some reason,
when presented in its raw form, reduction to absurdity can
seem strange.

See parts I and II of this series
in The Perl Review,

Spring 2008 and Summer 2008

Perl Undecidable The Perl Review 5.0

24 • Fall 2008 www.theperlreview.com

n How not to hit it off with a girl at a party ---------------
Once upon a time there was a beautiful ballerina. She spotted

a mathematician at a party, felt an instant attraction, walked
up to him, and said, “It must be wonderful to be able to do
mathematics. I could never imagine following things like proofs.”
The mathematician insisted that, since she was very intelligent,
she was certainly capable of not just understanding proofs, but
of appreciating the beauty some of them have.

The mathematician had memorized some lines of Edna St.
Vincent Millay for just such an occasion:

 Euclid alone
 has looked on beauty bare. Fortunate they

 Who, though once only and then but far away,
 Have heard her massive sandal set on stone.

As he quoted these lines, the mathematician felt the blood
rush to his face. The ballerina did not notice, or pretended not
to. Reassured, the mathematician led the ballerina through
Euclid’s short, elegant proof that there are an infinite number
of primes. (An extremely intelligent and widely read woman,
the ballerina already knew that a prime number is a number
divisible only by itself and 1.)

The mathematician met the ballerina’s eyes. They were violet
and registered shock. He asked her what part of the proof she
didn’t understand. She told the mathematician she understood
him perfectly, thank you very much.

She pointed out to the mathematician that he had started
by saying that since the primes were not infinite, there must be
a fixed number of them, and that therefore one of them must
be the largest. That was okay, she said.

But then he had acted as if he really believed in the largest
prime. He kept pretending until there was a contradiction. That
was really what he was after, the contradiction.

Once he had it, he had suddenly changed his tune. He placed
the entire blame for the contradiction on the largest prime and
discarded it. In fact, he had never really believed in the largest
prime, and was just using it the whole time.

She told the mathematician he was a vile little man, and that
she would be glad to hear nothing more of him or his proofs.
As she walked out of his life forever, the mathematician gazed,
mesmerized by the patterns her shoulder muscles made as they
rippled across her back.

n A direct proof ---
In my proof of Perl unparseability, I will, like the unlucky

mathematician, assume that something exists. Then I’ll use
it to create a Perl script as a counter-example. The counter-
example will show that my assumption creates an impossible
situation. Since it is impossible for the assumption to be true,
the assumption must be false, and that will be my proof.

What I am going to assume exists, is a function named
Acme::Halt::f_nullary(), which takes two arguments.
The first argument is a string containing the name of a file,
and the second is a string naming a Perl function. I assume that
Acme::Halt::f_nullary() returns 1 if, in the file named in

the first argument, the function named in the second argument
is nullary. I assume that f_nullary() returns 0 otherwise.

In the proofs, I treat Perl as if it were equivalent to a Turing
machine. Turing machines are the theoretical equivalent of
general-purpose computing. Technically, Turing machines don’t
allow any extensions that produce unpredictable behavior. They
could not, for example, simulate the unpredictable aspects
of networking. Even the time function is, strictly speaking,
unpredictable from the point of view of the program, and
therefore goes beyond Turing equivalence.

As a practical matter, these undecidability proofs apply just
as much to full-featured Perl as they do to its Turing equivalent
subset. I’ll return to this point.

My counter-example requires f_nullary to run in the
compile phase. I can be sure it will, since I’m assuming a Turing-
equivalent variant of Perl. That is, suppose Perl could determine
if a function in a file was nullary, but it required a special Perl
built-in available only in the run phase. Even though I can’t use
that built-in in the compile phase, I know I can simulate the
special built-in. I know this because I have Turing-equivalent
processing available in the compile phase.

The following counter-example Perl program shows that
it is impossible for there to be a f_nullary function that
behaves as described.

In direct.pl (Code listing 1, next page), I show some ordinary
Perl code, and it should run as long as f_nullary actually
exists. The first observation the Unkind Reader might make is
that, if this code proves anything, it’s that I don’t know how to
write a useful Perl program. Let me go back to a point I made
in the first article.

The code in these articles, unlike most of the code in The Perl
Review, is not trying to be useful. This Perl code is intended as
the subject of a thought problem, an aid for thinking out an
issue. It’s like Schödinger’s cat, locked into a box with flask of
poison gas under a hammer sensitive to quantum mechanical
effects. Schödinger’s intent was to pose a thought problem,
dealing with Heisenberg’s uncertainty principle and what it
means at the macro level. Schödinger was not trying to deal
with the issue of stray cats.

In direct.pl, as in the previous articles, I prove unparseability
by giving a specific example of an ambiguous Perl parse. The
example, which I owe to a Perlmonks post by ikegami:

 dunno + 4

Where dunno is a function, this can be parsed in one of two
ways. If dunno is prototyped as a nullary function (one which
takes no arguments), the plus sign is parsed as a binary operator.
Otherwise, the plus sign is parsed as a unary operator, and +4
is treated as an argument to the dunno function.

The result of the expression dunno + 4 can easily be
different, depending on the parse. When dunno is prototyped
nullary, its return value is added to 4. Otherwise, the return
value of dunno + 4 is the return value of dunno, and it’s up
to dunno what is done with the +4. In my examples, dunno
ignores its argument.

The Perl Review 5.0 Perl Undecidable

www.theperlreview.com Fall 2008 • 25

The file direct.pl is my counter-example. If f_nullary exists
as defined, the existence of direct.pl leads to an impossibility.
Here’s how.

If at line 15 f_nullary examines direct.pl and returns 0,
indicating that direct.pl establishes a non-nullary prototype for
dunno, then in lines 14-17, direct.pl will actually set dunno up
with a nullary prototype. This is a contradiction, so f_nullary,
as defined, can never return 0.

What if f_nullary returns non-zero at line 15? In that case
lines 14-17 will set dunno up with a nullary prototype. But a
non-zero return from f_nullary at line 15 by definition means
that direct.pl does not set up a nullary prototype for dunno.
This is a contradiction, so f_nullary, as defined, can never
return a non-zero value.

Since f_nullary, as defined, cannot return either zero or
a non-zero value, it cannot exist as defined.

The problem with f_nullary is not its name. If I rename
it widget the contradictions remain. Similarly, I can play
around with different return values. If I rewrite f_nullary
to return 42 for a nullary function and 711 for a non-nullary,
the test in lines 14-17 might no longer be an elegant ternary.
But clearly, if I change minor details of the return values of
f_nullary, direct.pl can also be changed to produce the same
contradiction.

The problem with f_nullary is its claim to be able to
tell whether a file sets a function up with a nullary prototype

or not. As long as the definition
continues to make that claim,
some counter-example very like
direct.pl I will show that that claim
is impossible.

n Turing equivalence -------
In these proofs I assume that Perl

programs are Turing equivalent.
In particular I assume that, given
a Perl program and its history to
any point, what happens after that
point will be entirely predictable.
This predictability must be not
just from some external meta-
viewpoint, but from the point of
view of the program. Of course,
in real life Perl has extensive
capabilities which expose it to,
or even try to create and exploit,
unpredictability.

Perl’s rand is an example.
Technically, it is not random, but
pseudo-random. From a point
of view that includes the system
clock, rand’s results are completely
predictable. But from the point of
view of the Perl script, rand is
usually unpredictable enough.
Similarly, even when network

behavior is predictable from a viewpoint that encompasses
multiple nodes and their network connections, the network
will often be unpredictable from the point of view of the node
running the Perl script.

Even though I assume Turing equivalence, these undecidability
results apply to Perl as a whole, whether its behavior is Turing
equivalent or not. That’s because, in practice, all our modern
extensions beyond the Turing model create more undecidability.
None of them reduce it.

As one example, suppose I allow, as an extension to Turing
equivalent Perl, the full use of rand. With rand available, I
can wrapper pieces of the Perl code:

 if (rand(2) > 1) { ... }

Predictable behaviors in the original Perl scripts become
unpredictable behaviors in the wrappered versions.

Theoretically, extensions to Turing machines might reduce
undecidability. Turing discussed the possibility of “oracles”.
Turing’s oracles could, whether intuitively, by exercising
supernatural powers, or by some other means, accurately
decide undecidable problems. But Turing doesn’t seem to have
expected anyone to invent a Turing oracle, and if anyone has,
they’re keeping it quiet.

The assumption of Turing equivalence is convenient for the
proofs. But there’s a more important motivation for sticking

Code listing 1: The code for direct.pl

 1 use 5.010;
 2 use warnings;
 3 use strict;
 4 use Acme::Halt;
 5
 6 sub runtime_nullary {
 7 my $function = shift;
 8 return 0
 9 if not defined (my $prototype = prototype $function);
 10 return $prototype eq q{};
 11 }
 12
 13 BEGIN {
 14 *dunno =
 15 Acme::Halt::f_nullary(__FILE__, 'dunno')
 16 ? sub {0}
 17 : sub() {0};
 18 }
 19
 20 print 'nullary dunno: ';
 21 say runtime_nullary('dunno') ? 'yes' : 'no';
 22
 23 print 'result is ';
 24 say dunno + 4;

Perl Undecidable The Perl Review 5.0

26 • Fall 2008 www.theperlreview.com

to Turing equivalence. Undecidability, which is caused by
functions which go beyond the Turing model, can be avoided
by using those non-Turing functions carefully or not at all. The
undecidability in the proofs I present in this articles comes
from Perl’s most basic control constructs. That means the
implications of undecidability are harder to avoid. Sticking to
Turing equivalence makes undecidability proofs more relevant
to real life, not less so.

n Compiling versus running ---------------------------------
As described in Programming Perl, Perl runs in two major

phases. The first phase is called the compile phase and the
second is called the run phase. Most (but not all) of what goes
on in the compile phase is compilation. Most (but not all) of
what goes on in the run phase is execution.

Code execution in the compile phase happens, for example,
in BEGIN blocks. BEGIN blocks are compiled along with other
code during the compile phase, but unlike the other code,
BEGIN blocks are executed immediately, without waiting for
the run phase. Run-phase compilation occurs, as an example,
in code supplied to string eval’s.

When it’s necessary to refer to the kind of processing that is
actually begin done, as opposed to the phase, Programming Perl
speaks of compile time and run time. So assignments inside
a BEGIN block take place in the compile phase but at run time.
Inlining of constant subroutines defined in a string eval takes
place in the run phase, but at compile time.

The distinction between “time” and “phase” is not always
made clearly. The perlmod man page uses the terms compile-
time and run-time in places where Programming Perl would insist
that the correct terms are “compile phase” and “run phase”. As
a result, perlmod’s explanations of what happens when can
be hard to follow.

n Does runtime_nullary show the proofs are wrong?
In direct.pl, I included a routine to test the results: runtime_

nullary(). It returns 1 if its argument string is the name of a
nullary function, and 0 otherwise. runtime_nullary() really
exists. I give the code—it’s all basic Perl and Perl built-ins,
used as documented. And I’ve tested it. Doesn’t the very real

existence of runtime_nullary()
mean that it is decidable whether a
function has a nullary prototype?
And doesn’t that mean there must
be something wrong with each of
my three proofs?

Specifically, even if I have a
Perl program not parseable in the
compile phase, why can’t I do the
following?

Add logic to list all functions •	
with nullary prototypes in the Perl
program. Put this logic where it
will be executed at the end of the
run phase. (In so doing, I must

not alter the parse of the original code. With caution that
should be possible.)

Next, run the Perl program through the compile phase •	
and the run phase, including through the new logic that
produces the nullary prototype listing.

Take the nullary prototype information produced by •	
this first run. Feed it into a second pass over the Perl script
which uses the nullary prototype information to decide the
parse.

This two-pass method is kludgy, but it is similar to the way
some text processors create indexes and cross-references. At
least one text processor which works this way sees widespread,
if not complaint-free, use.

First, a weird quibble
The first problem I’ll point out with the two-pass method

is, I’ll admit, a bit of a quibble. Perl allows me to change the
prototype as I proceed through the compile phase.

In particular, there can be multiple BEGIN blocks, each
setting a different prototype for the same function. The setting
of prototypes can even be conditional. Perl tells me when I
redefine subroutines, and squawks even louder when I change
the prototype, but I can turn off both of these warnings.

runtime_nullary will only report the most recent
prototype. This may not have been the one which was in effect
when most of the Perl code was parsed.

At this point, I may say, “That’s possible, but it’s just such
a weird corner case, let’s ignore it.” It is pretty weird, actually.
Fine. I'll ignore it.

Second, run phase prototype changes don’t count
There’s a more serious obstacle to the two pass method.

Function prototypes set up after the compile phase aren’t used
in parsing. They don’t count.

To be precise, they don’t count in most cases. In those places
where compile-time happens during the run phase, it uses any
function prototypes that were set up earlier in the run phase.

Code listing 2: the halts subroutine

 1 sub halts {
 2 my $machine = shift;
 3 my $input = shift;
 4 my $code_string_to_analyze = qq{
 5 BEGIN {
 6 run_turing_machine("\Q$machine\E", "\Q$input\E");
 7 sub whatever() {};
 8 }
 9 };
 10 s_nullary($code_string_to_analyze, 'whatever');
 11 }

The Perl Review 5.0 Perl Undecidable

www.theperlreview.com Fall 2008 • 27

But for most run phase processing, the code has already been
compiled when the run phase begins. Changes made to function
prototypes do not affect the parse, and information about run
phase changes to function prototypes is useless.

Third, there’s the Halting Problem
The most basic problem with using runtime_nullary to

assist in parsing, is that there is no way to ensure, in general,
that runtime_nullary will ever be called. The Perl script
might be an infinite loop.

In this direct proof, we didn’t reduce Perl parsing to the
Halting Question, but the issue of whether or not code is an
infinite loop never goes away. And the Halting Question lies
behind a question that is commoner in practice: For some length
of time N, where N is too long for a direct test to be practical,
does some arbitrary code take time N or longer to run? Proving
undecidability by reduction to the Halting Question tackles
the issue of infinite loops directly, rather than trying to deal
with them as a side issue.

n A traditional proof ---
Here is the Perl unparseability proof in the traditional

form of a reduction to the Halting Question. First, I will prove
Kennedy’s Lemma:

 If you can parse Perl, you can answer the Halting Question

I call this Kennedy’s Lemma, because I first saw it stated in
Adam Kennedy’s PPI documentation.

The proof of Kennedy’s Lemma is another reduction to
absurdity. Once again I assume I have a routine that returns 1
if a subroutine has a nullary prototype, and 0 otherwise. This
time I assume it is named s_nullary, that it analyzes a string
of Perl code that is its first argument, and that the name of the
subroutine is its second argument.

Perl is Turing-complete. I will also assume that some helpful
and theoretically-oriented chap has written a subroutine
named run_turing_machine which takes a Turing machine
representation as its first argument, and input for that Turing
machine as its second argument.

On these two assumptions, I can write a Perl subroutine
I name halts (Code listing 2, previous page), which solves
the Halting Question for an arbitrary Turing machine with
arbitrary input.

Specifically, s_nullary in line 10, in order to figure out
whether whatever is given a nullary prototype, has to figure
out whether line 7 is ever executed. To do this s_nullary must
somehow figure out whether line 6 will ever finish. Line 6 runs
a arbitrary Turing Machine with arbitrary input, and so in order
to know the prototype of whatever, run_turing_machine
must be able to solve the the Halting Question. This proves
Kennedy’s Lemma.

With Kennedy’s Lemma proved, a simple reduction to
absurdity proves that Perl is unparseable. By Kennedy’s Lemma,
if I can parse Perl, I can solve the Halting Question. But I can’t
solve the Halting Question. Therefore I can’t parse Perl.

n Conclusion --
These articles have shown that, in general, Perl parses are

not decidable during Perl’s compile phase, and that carrying
the problem over into the run phase will not help. Perl cannot
always parse Perl. And, however I define static and dynamic, Perl
is not, in general, either statically or dynamically parseable.

Perl’s unparseability comes from one of its basic,
deepest properties—it gives Turing-complete power to the
programmer at compile time. With Turing-completeness comes
undecidability.

Perl unparseability is not a bug or a misfeature. It’s an
inseparable aspect of a feature—Perl’s full power is available
when setting up its own compilation environment. This is a
valuable feature, purchased mainly with the depreciated currency
of theoretical purity.

n References ---
Programming Perl, 3rd Edition by Larry Wall, Jon Orwant, and

Tom Christiansen discusses Perl compilation in Chapter 18. It
sets out a distinction between compile/run time and compile/
run phase. The perlmod man page attempts to cover the same
ground.

Randal Schwartz’s Perlmonks node “On Parsing Perl” was a
important development in this discussion: http://www.Perlmonks.
org/?node_id=44722

ikegami’s elegant example of parsing ambiguity in Perl from
Perlmonks: http://Perlmonks.org/?node_id=688260

"Perl Cannot Be Parsed: A Formal Proof ", my original
Perlmonks post on Perl's unparseability: http://www.perlmonks.
org/?node_id=663393

“Perl and Undecidability”, The Perl Review 4.2 (Spring 2008),
by Jeffrey Kegler, is part 1 of 3 in this series.

“Rice’s Theorem”, The Perl Review 4.3 (Summer 2008), by
Jeffrey Kegler, is part 2 of 3 in this series.

My general BNF parser, currently in alpha: http://search.cpan.
org/dist/Parse-Marpa

Adam Kennedy’s PPI module: http://search.cpan.org/dist/PPI

n About the author ---
Jeffrey Kegler has been using Perl since 1987. At the time, he’d
bid a fixed-price gig and took a chance that the newly-released
Perl 1 would be better than shell scripting. Betting on Larry
Wall proved to be a good move. Jeffrey is the author of the
Test::Weaken and Parse::Marpa CPAN modules.

Jeffrey is a published mathematician, has a BS and an MSCS
from Yale, and was a Lecturer in the Yale Medical School. In
2007 he published his first novel, The God Proof. It centers on
a little known part of Kurt Gödel’s work—his effort to prove
God’s existence. Gödel worked out his proof in two notebooks:
notebooks which were missing from his effects when they were
cataloged after this death. The God Proof begins with Gödel’s lost
notebooks reappearing in a coastal town in modern California.
It’s available as a free download: http://www.lulu.com/content/933192.
You can purchase print copies at Amazon: http://www.amazon.
com/God-Proof-Jeffrey-Kegler/dp/1434807355.

