
 # add to parent's Child list
 push(@{ $node->{'Parent'}->{'Children'} }, $node)
 if ($node->{'Parent'});

 $parent_stack[$depth] = $node;

 $node;
 } grep { ! m/^\s*$/ } @lines; # strip out blank lines

 return \@ftree;

 my @ftree = map {
 s/\s+$//; # trim ends;
 my $depth = s/\s{4}//g; # count number of indent blocks
 $depth++; # Start at one, though, rather than 0

 # create node structure
 my $node = {
 Name => $_,
 Depth => $depth,
 Parent => $parent_stack[$depth - 1],
 Children => [],
 };

 # add to parent's Child list
 push(@{ $node->{'Parent'}->{'Children'} }, $node)
 if ($node->{'Parent'});

 $parent_stack[$depth] = $node;

 $node;
 } grep { ! m/^\s*$/ } @lines; # strip out blank lines

 return \@ftree;

 croak “Category $node not found”
 unless ($found);

 my @ancestry = ($node);

 while ($found->{'Parent'}->{'Depth'} >= 1)
 {
 push @ancestry, $found->{'Parent'}->{'Name'};
 $found = $found->{'Parent'};

www.theperlreview.com Summer 2008 • 23

by Jeffrey Kegler
jeffreykegler@mac.com

Perl and undecidability:
rice’s theorem

This winter I moved into a cabin at the edge of a frozen
lake and forsook gainful employment in favor of work
on a CPAN module. Currently, no generally accepted,

handy tool accepts arbitrary BNF and parses with it. Recent
research suggests how to create that tool. I call my effort
Parse::Marpa. An alpha version is now on CPAN.

Approaching beta, I thought about potential applications.
My thoughts turned to Perl 5. The Perl community had reached
the consensus that Perl 5 is not statically parseable. Adam
Kennedy, in the documentation for PPI, indicated how this
might be proved. I worked the proof out formally and posted
it on Perlmonks and also published it in this journal (XXX).

The formal proof shows that Perl 5 is not just statically
unparseable, it is also dynamically unparseable. The saying
had been that “Only perl can parse Perl”. In fact, not even Perl
5 can parse Perl 5 in every case.

Here’s the reason: The only way to parse Perl 5 is to run it
or to simulate it using a language of equivalent power. Perl
5 is what’s called Turing-complete, and all Turing-complete
languages are subject to the Halting Problem. There is no
guarantee a Perl 5 program will ever finish running and no
guarantee it will ever finish parsing itself.

In this article I will use Rice’s Theorem to prove that Perl is
unparseable. Rice’s Theorem is powerful and easy to apply. It’s
well known in mathematical circles and deserves to be better
known by programmers.

n undecidable parsing is a feature -------------------------
Undecidable parsing is not a bug. It is not a misfeature. It goes
hand-in-hand with important capabilities. Understanding this
is important to understanding where programming languages
are going.

Perl 5 is unparseable because it gives the programmer
Turing-complete power before compile time. As time goes on,
it becomes clearer and clearer that Larry Wall aimed Perl in the
right direction. Theoretical perfection at compile time is a loss
at run-time. Industrial strength debugging and optimization
require information unavailable before run-time. Decidability
is not good if the decisions are bad.

n decidability ---
Decidability means the ability for a Turing-complete machine
(or language), to determine the answer to a yes/no question.
A yes/no question is decidable if a Turing-complete Perl script
can answer it. Otherwise it is undecidable.

Turing-equivalence means equivalence to the model of
computing in Alan Turing’s 1936 paper. A machine or language
is Turing-complete if it has Turing-equivalent power or better.
All modern general-purpose machines and languages are at
least Turing-complete.

Perl scripts differ from theoretical Turing-complete programs
in two ways, neither of them serious obstacles to Rice’s Theorem.
First, Turing-complete machines and programs have unlimited
memory. The equivalent Perl implementation would never run
out of memory. A real-life Perl script will fail to answer an
undecidable question by running out of memory. Its theoretical
Turing-complete counterpart fails by running forever. This is
not a difference we need to care about.

Second, Perl scripts have certain capabilities which Turing-
equivalent machines do not. Turing-equivalent machines and
languages must be completely predictable (deterministic). Perl
has unpredictable features like its rand built-in. Pedantically,
rand is pseudo-random instead of random, but from the point
of view of the Perl script rand is close enough to random. Perl’s
ability to interact with outside processes and across networks
means many Perl calls behave unpredictably, perhaps even in
the quantum mechanical sense.

But unpredictability is no obstacle to undecidability proofs.
An undecidable question does not become decidable when its
subject matter becomes unpredictable.

n undecidability --
Rice’s Theorem states that every interesting question about
what a Perl script does is undecidable.

Does a Perl script ever print the character ’0’?•	
Does a Perl script write to STDERR?•	
Is a Perl script’s output the same as its input?•	
Does a Perl script fork a shell?•	
Does a Perl script contain a virus?•	

All of these questions can be proved to be undecidable using
Rice’s Theorem. Here is Rice’s Theorem more formally:

Any question about what an arbitrary Perl script does with
an arbitrary input is undecidable, unless it is trivial.

n Trivial? ---
For the purposes of Rice’s Theorem, a question is trivial if

the answer is always “yes”, or if the answer is always “no”. A

rice’s Theorem The Perl Review 4.3

24 • Summer 2008 www.theperlreview.com

trivial question is one which is true or false regardless of the
Perl script I’m asking about.

An example of a trivial question is “Will the output of this
Perl script be zero or more characters in length?” This answer
has to be “yes”. The opposite question, “Will the output of this
Perl script be negative in length?”, will always be “no”. It also
is a trivial question. The opposite of any trivial question will
always be another trivial question.

n is versus does --
For a question to be proved undecidable by Rice’s Theorem,
it must be about what a Perl script does. It cannot merely be
about what a Perl script is. For example, Rice’s Theorem applies
if I am asking “Does a Perl script ever print the character ’0’?”.
Rice’s Theorem does not apply if the question is “Does a Perl
script contain the character ’0’?”.

The mathematician’s way to say this is that Rice’s Theorem
applies only to questions about partial functions. Ignore the
“partial” in “partial function” for the moment. Programmers
know what a partial function is, if not always by that name. I
want to look carefully at the term “function” first.

A function is a mapping of each member of a set of inputs
to exactly one output.

The requirement that each input have exactly one output is
important. This Perl subroutine implements a function:

sub successor { (shift)+1 }

 The answer for 1 can only be 2. The answer for -1 can only
be 0. I am ignoring overflow issues. Every input to successor
has a most one output.

Constant functions are functions which have the same
output for all inputs. Here’s one that always returns the same
number, 42:

sub the_answer { 42 }

A function must have exactly one output for each input.
The outputs do not have to be unique to each input. Constant
functions, where the output is always the same, are quite
acceptable as functions for the purposes of Rice’s Theorem.

Perl subroutines can be functions, and are sometimes called
functions. Unless I make it clear otherwise, from here on out
“function” will mean the partial function performed by a Perl
script.

n Partial functions ---
Computer scripts, programs and subroutines are partial functions.
A partial function is a function which might fail to produce
an output.

The classic way for a program to fail to produce an output
is for it to loop forever. It’s a convenient example, because it’s
implementation-independent. Every general-purpose method
of programming a computer is capable of infinite loops.

I can also say that if a Perl script returns an exit code other
than zero, it fails to produce an output. If I do that, it becomes

hard to take into account output from the Perl script prior to
exit. How to best define output depends on the proof.

n Predictability ---
One Perl script which does not implement a function is
rand:

say rand(42);

This script fails to implement a function because, for any
given input, it can produce many different outputs.

This means a Perl script with rand or any other unpredictable
system call may fail to implement a function, and therefore
strictly speaking will be outside the scope of Rice’s Theorem.
In fact, as I explained earlier, undecidability results apply as
much to unpredictable scripts as to predictable ones.

n applying rice’s Theorem -----------------------------------
Here's a list of five requirements, or conditions. One of the
conditions is for a yes/no question. If all five conditions
hold, then Rice's Theorem tells us that the yes/no question is
undecidable.

1. A definition of the input to Perl scripts.

2. A definition of the output from Perl scripts.

3. A yes/no question about the output of Perl scripts.
The question must look at the scripts as if they were
partial functions.

4. A case of a Perl script and an input for which the
answer to the question is “yes”.

5. A case of a Perl script and an input for which the
answer to the question is “no”.

Carefully defining input and output is necessary. In some
proofs, the input and output will be the only conditions that
are not obvious.

n undecidable: does a Perl script print 0? --------------
1. Definition of the Input: The characters available on

STDIN.

2. Definition of the Output: The characters written to
STDOUT.

3. The Question to be Decided: For any input and any perl
script, does it print the character ’0’ as part of its output?

4. A Case where the Answer is “No”: The empty Perl script
with empty input.

5. A Case where the Answer is “Yes”: The Perl script script
“say 0” with empty input.

The Perl Review 4.3 rice’s Theorem

www.theperlreview.com Summer 2008 • 25

The question to be decided is clearly about the output as a
function. The two cases show that it is non-trivial. By Rice’s
Theorem the question is undecidable. QED. (“QED” is the
traditional way to indicate the end of a proof.)

The “empty Perl script” is the zero length Perl script. I’ll use
the empty Perl script as much as I can.

The empty input is the zero length input. In this case, the
question does not compare input and output.

n undecidable: output same as the input? ---------------
Input: The characters available on STDIN.

Output: The characters written to STDOUT.

Question: Given a Perl script, will the output ever be the
same as the input?

“No” Case: The empty Perl script with any input of length
greater than 0.

“Yes” Case: The empty Perl script with the empty input.

QED.
Proofs like this and the previous proof can be constructed

for any non-trivial question about STDOUT as a function of
STDIN.

n undecidable: does it write to STderr? ----------------
Input: The characters available on STDIN.

Output: The characters written to STDERR.

Question: For any Perl script and any input, does the script
with that input write to STDERR?

“No” Case: The empty Perl script.

“Yes” Case: “say STDERR 42”.

This question is clearly about the output as a function. Rice’s
Theorem applies. QED.

n undecidable: does it fork a shell command? --------
Not all Perl variants are capable of fork’ing, and some

don’t have shells available. This proof requires an additional
assumption:

There are Perl scripts which fork and exec shell commands,
and at least one shell command can be identified by its
name.

With this assumption I can proceed as usual:

Input: Characters available on STDIN (but actually not
relevant).

Output: A trace of fork and exec commands, including
the name of the command exec’d.

Question: For any Perl script and any input, does the script
with that input fork and exec a shell command?

“No” Case: The empty Perl script.

“Yes” Case: By the assumption above, there is a script that
fork’s and exec’s a shell command.

The question is clearly about the output, and is non-trivial.
QED.

This proof uses a really nice technique which I learned
from the next proof. I don’t define the term “shell command”.
It’s not necessary or useful to do so. All the proof needs is the
assumption that there is such a thing as a shell command. With
that I can ignore the issue of exactly what is or is not a shell.

I can substitute the term “interesting command” for “shell
command” in the proof and its assumption. The new proof
shows that it is undecidable whether a Perl script fork’s and
exec’s any interesting commands. Which commands I call
“interesting” is up to me.

n undecidable: does it contain a virus? ------------------
The ideas in this proof are from William Dowling. Dowling

didn’t define virus. He assumed a few things about viruses:

1. Viruses infect systems, in the process changing
memory, disk, or some other kind of readable
storage.

rice’s Theorem The Perl Review 4.3

26 • Summer 2008 www.theperlreview.com

2. It is possible to write a Perl script that is a virus.

2. At least one Perl script is not a virus.

Input: A dump of readable storage as it existed when the
Perl script started.

Output: A listing of all the changes to readable storage
caused by the Perl script.

Question: For any Perl script and any input, is the Perl script
with that input a virus?

“No” Case: Above, I assumed that one Perl script is not a
virus. For this Perl script and some input, the answer is “no”.

“Yes” Case: I assumed that a virus could be written in Perl. So
for a least one Perl script and any input, the answer is “yes”.

I assumed that viruses change readable storage, so the
question is about the output of a Perl script as a function. All
the conditions of Rice’s Theorem are fulfilled. I cannot decide,
in general, whether a Perl script will infect readable storage.
Therefore I can’t know if it’s a virus. QED.

This proof looks at input and output from a different
angle—as snapshots of the system. I don’t deal with standard
input. I’ve never heard of a virus that waited for a say-so from
the user. If I want to allow for the possibility of polite viruses,
I can modify the definition of input to include user input.

In real-life, some of the changes to readable storage won’t
be made by the Perl script. Even if I forbid other applications,
system processes might make changes. That’s why the output
includes only changes to readable storage made by the Perl script.
I could use tracing to determine which changes those are.

But the proof still works, even if I can never figure out
which process caused what change. Here’s why: From the full
listing of all changes to readable storage by all processes, I can
generate a set of listings, one for every possible choice among
the changes. One listing in this set is the one that contains all
the changes caused by the Perl script, and only those changes.
The proof works if I use that one. Since I know that listing
exists, I know the proof works, even if I don’t know which
listing the proof needs.

In all these proofs, I don’t have to show how I would compute
the inputs and outputs for a real-life example. The inputs and
outputs have to actually exist. But I don’t have to know how
to compute them.

n does a Perl script contain a bug? ------------------------
A beauty of the Virus Proof is its minimal assumptions. Anything
I might want to call a virus fits the assumptions. So do a lot of
things I would not call viruses. That’s OK. It’s just fine if the
Virus Proof proves more than it sets out to prove.

Replacing the word “virus” with “bug” turns the Virus Proof
into a proof that no Perl script can find all the bugs in another,

arbitrary, Perl script. Once again, only a few basic assumptions
about bugs are needed, not a definition.

One additional change to the Virus Proof might be necessary
for it to make a Better Bug Proof. Viruses “infect”, and therefore
leave some trace in, readable storage. Bugs can show up as volatile
output, such as to screen displays. Bugs can also show up in
non-machine-readable forms, such as the output of printers. To
include bugs which show up only on screens and in printouts, I
can broaden the output definition. One way would be to include
a trace of all writes to unreadable or volatile media.

n Questions about specific scripts -------------------------
It’s time to look at questions that Rice’s Theorem does not apply
to. For Rice’s theorem to apply, the question has to be about
partial functions in general. If I’m only asking about some
partial functions or some Perl scripts, then Rice’s Theorem
does not apply, at least not directly.

For example, above I proved that it is undecidable in the
general case whether a Perl script prints the digit “0”. Does that
mean that I can’t decide that the Perl script

 say 0;

prints 0? Not at all. Similarly,

 say 42;

does not print 0 and I can decide that.
Rice’s Theorem does not apply to questions about specific

Perl scripts. Rice’s Theorem also does not apply to questions
about finite sets of Perl scripts. Rice’s Theorem only directly
applies to questions that are about all functions performed by
Perl scripts.

While, pedantically speaking, Rice’s Theorem can’t be used
to answer questions about subclasses of Perl scripts, logic hacks
can work around that restriction. If I use logical connectives
(and’s, or’s and not’s), and multiple questions, I can formulate
questions about all Perl scripts that imply the answers to
questions that are only about subclasses of Perl scripts.

I can indirectly apply Rice’s Theorem to any question about
any subclass of Perl scripts, if

The subclass is defined by a partial function.•	
The subclass is non-trivial. (There is at least at least •	

one Perl script and one input not in the subclass.)
The question is about a partial function.•	
The question is non-trivial for that subclass. (There’s a •	

Perl script and an input in the subclass for which the answer
is yes, and another Perl script and an input in the subclass
for which the answer is no.)

For example, pedantically speaking, in Rice’s Theorem,
I can’t restrict the question about writing to STDERR only
to scripts which open sockets. But I can ask if it is decidable
whether a script which opens a socket, also writes on STDERR.
(Using logical connectives and pseudo-code, this would be NOT

The Perl Review 4.3 rice’s Theorem

www.theperlreview.com Summer 2008 • 27

opens_socket OR writes_stderr.) I can also ask if it is
decidable whether a script which opens a socket does not write
on STDERR. (NOT opens_socket OR NOT writes_stderr.)
Rice’s Theorem applies to both these questions, and they are
undecidable. This tells me that the question of whether Perl
scripts write to STDERR is undecidable, even if I am limiting
consideration to Perl scripts which open sockets.

n is versus does: the litmus test -----------------------------
In many cases it’s clear what is meant by the difference

between what a script “does” (the partial function it implements)
and what a script “is” (properties of the script which are not
properties of the partial function.) But not always. For example,
take the question “Is the script recursive?”

This is an “is” question, and Rice’s Theorem does not apply.
Intuitively, this might seem like a “does” question and it might
seem that Rice’s Theorem should apply.

Fortunately, there’s a litmus test. If any two Perl scripts
which implement the same function have different answers to
a question, then that question is an “is” question, and Rice’s
Theorem does not apply. Otherwise, it’s a “does” question, and
Rice’s Theorem does apply.

If I can find a function which has both a recursive solution
and a non-recursive solution, that will be enough to show
that the question “Is the script recursive?” is one of those
not addressed by Rice’s Theorem. Many problems have both
recursive and non-recursive solutions. Rather than use an
elegant pair, I’ll settle for a simple example. The code below
copies a single line from STDIN to STDOUT. Nobody in their
right mind would solve this problem recursively, especially in
Perl. But here it is:

sub inefficient {
 return unless @_;
 print (shift);
 inefficient(@_)
 }

inefficient(split //, <STDIN>);

This same function is implemented much more nicely by
the following non-recursive script:

 print;

This demonstrates that the question of whether or not
a Perl script is recursive is not about partial functions, and
therefore is not a question whose decidability Rice’s Theorem
can determine.

n decidable: does it run longer than n seconds? -----
If a Perl script implementing a partial function runs in less
than N seconds, I can write a slower one that implements the
same partial function. I can write it less efficiently, or I can
just insert pointless logic. Since I can write two scripts which
perform the same partial function, but have different answers

to the question, clearly the question of run-time length is not
about the partial function. Rice’s Theorem does not apply.

Pedantically, If N is less than Perl’s start-up time, Rice’s
Theorem does apply, because every script produces the same
answer. That means every script for every partial function
produces the same answer, and technically speaking, the
question is about partial functions. But in that case the answer
to the question is always “yes”, so the question is trivial. Rice’s
Theorem applies to trivial questions, but it does not prove
undecidability for them.

I can easily decide whether a Perl script takes N seconds to
run or not. I start the script and time it. But for one question
about about how long a Perl script runs, Rice’s does prove
undecidability. That’s the question of whether a Perl script
runs forever -- the Halting Question.

For the Halting Question, all scripts implementing the same
partial function have the same answer. When the question is
whether the program will run forever, making the script less
efficient doesn’t change the answer. Timing a Perl script doesn’t
help. Timings cannot reliably tell the difference between Perl
scripts which run forever, and Perl scripts which halt after
running for a very long time. For the Halting Question, Rice’s
Theorem applies and proves undecidability.

n Proof: Perl is unparseable ----------------------------------
This proof depends on a parsing ambiguity illustrated in the
following elegant example, which is taken from a posting by
ikegami on Perlmonks.

$ perl -E 'sub dunno { 3 } say dunno + 4'
3
$ perl -E 'sub dunno() { 3 } say dunno + 4'
7

In both commands the dunno subroutine returns 3, ignoring
any argument it is passed. In the first, there is no prototype, so
that “dunno + 4” is parsed as a call to dunno with +4 as its
argument. The +4 is discarded and the command prints “3”.

In the second command, there is a nullary prototype, and
the plus sign in “dunno + 4” is parsed as a binary operator.
dunno is passed no arguments and the 3 which it returns is
added to the 4. The result is “7”.

This proof will proceed by showing that it’s undecidable
whether dunno has no prototype, as in the first command,
or a nullary prototype, as in the second. Without knowing
how dunno is prototyped, I can’t know how the lines of Perl
in the example above are parsed. Since dunno’s prototype is
undecidable, the parses of the lines above are undecidable. Since
the parses of the lines above are undecidable, Perl parsing in
general is undecidable.

Input: Not relevant.

Output: A printout showing how some Perl test code
would be parsed, when preceded by the Perl code in question.
This could be obtained by concatenating the test code to the

rice’s Theorem The Perl Review 4.3

28 • Summer 2008 www.theperlreview.com

Perl code in question, running the combined code with the
-MOConcise,-terse flags, then extracting the parse for the
test code from the output.

Question: For any Perl code, any input, and the test code
“say dunno + 4”, does the plus sign in the test code parse
as a binary operator?

“No” case:

BEGIN { *dunno = sub { 3 } }

“Yes” case:

BEGIN { *dunno = sub () { 3 } }

The question is about the output of constant functions, and is
non-trival. So the parse of the test code is undecidable. QED.

There’s a special requirement in this proof. The output in
this proof is a parse, and a parse is produced before run-time. I
must show that I can use Turing-complete Perl code to determine
the prototype of the dunno subroutine at compile time.

A function definition won’t work. Function definitions take
effect before the execution of any Perl code, even the code in
BEGIN blocks. For Turing-complete Perl to choose dunno’s
prototype, I need to establish the prototype before the test code
is compiled, but I cannot use a function definition.

In the non-triviality conditions, I set up prototypes for
anonymous subroutines. I give the anonymous subroutine of
my choice the name dunno using symbol table manipulation.
I do this in a BEGIN block, it is available at compile time, and
it affects the parse of the test code.

Larry Wall says there is more than one way to do it. Even a
ragged-edge hack like this is no exception. Another way to set
up the prototypes is to put function definitions into strings.
The strings can be eval’ed in a BEGIN block. The eval’ed
function definitions will be available when the test code is
compiled. Their prototypes will affect the parse.

n how rice’s Theorem is proved ----------------------------
I won’t prove Rice’s Theorem here. It is proved twice in the
Wikipedia article on Rice’s Theorem: once informally and
once with some rigor. The Rice’s proof is very similar to the
one for the Halting Theorem, which I gave in Perl-ish form in
the first article of this series. In the next article in this series,
I will give another proof that Perl is unparseable. That proof
that will follow the same strategy as the two Wikipedia proofs
of Rice’s Theorem.

The “Formal Statement” in the Wikipedia article on Rice’s
Theorem describes the partial functions using integers as
their input and output. I use strings to represent input and
output. So do the proofs in the Wikipedia article. For an actual
implementation, strings would be far superior. But integers
have been standard in math.

Integer and string representations of input and output are
equivalent. Each can be mapped to the other in many ways.

One way to map every integer to a string is after the fashion
of Math::BigInt::bstr().

At machine level, every string is already represented as a
number. I could implement the mapping of an arbitrary length
string to an integer by taking the numerical value of each
character of a string and using Math::Bigint to do arbitrary
precision shifts and adds. That would still fail to capture the
full theoretical concept, since the Perl implementation won’t
have infinite memory available to it. But it’s not necessary to
indicate how to write these mappings in Perl. All that is needed
is to show that mappings exist.

The “Formal Statement” in the Wikipedia article on Rice’s
Theorem also refers to Gödel-encoding. A Gödel encoding is a
way of representing partial functions as integers. Every partial
function has at least one Perl script that represents it, and this
is an easy and efficient Gödel encoding of partial functions to
strings. For a Gödel encoding to integers, the Perl scripts can
in turn be mapped to integers, just like any other strings.

n Conclusion --
Rice’s Theorem is flexible and has wide applications. Results
come easily. So easily that Rice’s can seem like a “black box”.
Out pops the answer, but sometimes no feeling for why the
proof is true pops out along with it.

In the next and last article in this series, I will go back
to basics. I will prove the Perl unparseability result without
invoking Rice’s Theorem. This proof will be similar to that

The Perl Review 4.3 rice’s Theorem

www.theperlreview.com Summer 2008 • 29

given for the Halting Theorem in my first article, and will
bring us full circle.

n references ---
William Dowling’s Virus Proof: “There Are No Safe Virus

Tests”, William Dowling, American Mathematical Monthly, v.96
n.9, p.835-836, Nov. 1989. ISSN 0002-9890. http://vx.netlux.org/
lib/awd00.html

Rice’s Theorem: http://en.wikipedia.org/wiki/Rice%27s_
Theorem

Turing Completeness: http://en.wikipedia.org/wiki/Turing_
completeness

ikegami’s elegant example of parsing ambiguity in Perl, from
Perlmonks: http://perlmonks.org/?node_id=688260

“Perl Cannot Be Parsed: A Formal Proof ”, my original
Perlmonks post on Perl’s unparseability: http://www.perlmonks.
org/?node_id=663393

My general BNF parser, currently in alpha: http://search.cpan.
org/dist/Parse-Marpa

Adam Kennedy’s PPI module: http://search.cpan.org/dist/PPI

n about the author ---
Jeffrey Kegler has been using Perl since 1987. At the time, he’d
bid a fixed-price gig and took a chance that the newly-released
Perl 1 would be better than shell scripting. Betting on Larry
Wall proved to be a good move. Jeffrey is the author of the
Test::Weaken and Parse::Marpa CPAN modules.

Jeffrey is a published mathematician, has a BS and an MSCS
from Yale, and was a Lecturer in the Yale Medical School. In
2007 he published his first novel, The God Proof. It centers on
a little known part of Kurt Gödel’s work—his effort to prove
God’s existence. Gödel worked out his proof in two notebooks:
notebooks which were missing from his effects when they were
cataloged after this death. The God Proof begins with Gödel’s lost
notebooks reappearing in a coastal town in modern California.
It’s available as a free download: http://www.lulu.com/content/933192.
You can purchase print copies at Amazon: http://www.amazon.
com/God-Proof-Jeffrey-Kegler/dp/1434807355.

Perlcast
P O D C A S T I N G P E R L

- R E C O R D E D T A L K S -

The latest from conferences, Perl Mongers
meetings, and other events.

- I N T E R V I E W S -
Featuring Larry Wall, Damian Conway, Marcus

Ramberg, Leöpold Tötsch, Allison Randal,
David Wheeler, Mark Jason Dominus, José

Castro, brian d foy, Ian Langworth, chromatic,
Peter Scott, Adam Kennedy, Casey West, Chris

Brooks, and more on the way.

- C O N T E S T S -
Book giveaways, software giveaways,

TMTOWTDI contests.

A l l F r e e
S u b s c r i b e T o d a y A t

h t t p : / / p e r l c a s t . c o m

