
            # add to parent's Child list
            push( @{ $node->{'Parent'}->{'Children'} }, $node )
               if (  $node->{'Parent'} );

            $parent_stack[ $depth ] = $node;

            $node;
    } grep { ! m/^\s*$/ } @lines;   # strip out blank lines

    return \@ftree;

    my @ftree = map {
            s/\s+$//;                   # trim ends;
            my $depth = s/\s{4}//g;     # count number of indent blocks
            $depth++;                   # Start at one, though, rather than 0

            # create node structure
            my $node = {
                         Name   => $_,
                         Depth  => $depth,
                         Parent => $parent_stack[ $depth - 1 ],
                         Children => [],
                       };

            # add to parent's Child list
            push( @{ $node->{'Parent'}->{'Children'} }, $node )
               if (  $node->{'Parent'} );

            $parent_stack[ $depth ] = $node;

            $node;
    } grep { ! m/^\s*$/ } @lines;   # strip out blank lines

    return \@ftree;

    croak “Category $node not found”
       unless ( $found );

    my @ancestry = ( $node );

    while ( $found->{'Parent'}->{'Depth'} >= 1 )
    {
        push @ancestry, $found->{'Parent'}->{'Name'};
        $found = $found->{'Parent'};

www.theperlreview.com 	 Spring 2008 • 21 

by Jeffrey Kegler 
jeffreykegler@mac.com

Perl And Undecidability
 The Halting Problem

How do I know what a Perl program is going to do 
without running it? Does it matter that it’s Perl 
instead of some other language? It turns out that the 

answer is related to the Halting Problem, which says that there 
is no general solution to the question of whether an arbitrary 
computer program will ever stop running. If  I can’t decide 
that, I can’t perfectly analyze source code to figure out what it 
is doing without running it.

I first started thinking about this problem because it’s a thorn-
in-the-side for Adam Kennedy’s PPI module, which attempts 
to parse Perl code without running it. PPI is the backbone of 
Perl::Critic, a tool to enforce code policy. Can PPI ever 
be 100% correct? I won’t answer that question in this article, 
but I will go through the Halting Problem to show you how it 
applies to Perl. This is a first in a series of three articles that 
will eventually give you that answer.

These articles will avoid mathematical notation in favor of 
Perl 5. Perl 5 has its disadvantages for this work but it is an 
excellent way of presenting algorithms, in many ways much 
less awkward than the mathematical notations. I hope some 
readers, seeing the ideas in this form, will become comfortable 
enough with them to tackle them in more standard notation. 
If you decide you want to do that, Wikipedia is an excellent 
place to start.

n Undecidability---------------------------------------------------
A computer problem is undecidable if  it’s a decision about which 
of two sets an input falls into, and it’s impossible to make that 
decision. Every computer problem can be seen as one or more 
decisions between two choices, so that all limits to decidability 
are limits to what can be done by computer. This is the first in a 
series of three articles about an insight that undecidability gives 
us into Perl, and the insights Perl gives us into undecidability.

These days computability and undecidability are treated as 
synonyms, but questions about decidability predate our modern 
notion of computing. The first person to formalize computability 
was Alan Turing, who introduced the Halting Problem. The 
Halting Problem is the problem of deciding whether a given 
computer with a given input runs forever or eventually halts. 
Turing didn’t call it the the Halting Problem, but since his day 
it’s gotten that name. Turing showed that the Halting Problem 
was uncomputable and therefore undecidable.

The Halting Problem is far from the only undecidable 
problem. There are many others, and it is not at all hard to run 
into them in everyday practice. It is usually obvious that an 
undecidable problem is going to be, at the least, very difficult. 
You often avoid them anyway, and in that case whether a problem 

is undecidable or merely just plain hard is a quibble. But there 
are also problems whose solution, if  possible, justifies major 
resources. Knowing a problem is undecidable allows you to 
either redefine it or give up.

n Borrow your cat?-----------------------------------------------
There’s a big problem with writing a proof in Perl. When I 
see Perl code, it raises a set of expectations. Most of those 
expectations are wrong when it comes to proofs. Perl code is 
usually written to do something. This code with this article 
is not: it’s written to explore an idea as a thought problem.

The most famous example of  a thought problem is 
Schrödinger’s cat. In it, you need a cat. You lock him in a box 
shielded not only from outside interference, but from outside 
observation. Inside this box you put another box. This inner box 
is not airtight, but it is shielded from interference by the cat. 
The inner box has a geiger counter triggered to detect atomic 
decays. The geiger counter has a relay which controls a hammer 
hanging over a flask, closed, fragile, and filled with a gas of high 
feline toxicity. Dr. Schrödinger suggested hydrocyanic acid.

According to quantum mechanics, the geiger counter, as 
long as it is not observed, never trips the relay, never releases 
the hammer, never breaks the glass, and never kills the cat. 
But neither is the opposite true. You cannot say that the relay 
was tripped, that the hammer dropped, that the flask was 
broken, or that the cat is dead. The situation inside the box 
is a mixture of the two, not even a probability, but a kind of 
probability wannabe called a quantum superposition. When the 
box is opened the superposition collapses into a probability, 
the probability collapses into a fact, and the cat either either 
collapses dead or springs out of the box.

So what’s up with the cat before the box is opened? That’s 
the point of the problem. It doesn’t really engage our intuition 
to be told that the decay state of an atom is a mathematical 
function involving complex numbers. To be told that about the 
trace a geiger counter leaves on its recording tape is a bit more 
of a challenge. But neither compares to the challenge involved 
in trying to envision a cat who is not alive, not dead, not in 
a transition from life to death, not in a transition from death 
to life, and not even in a state which is a red-blooded real-
numbered probability of life or death. Now that’s a challenge 
to our intuition.

If you think about Schrödinger’s cat like as an engineer, you 
will ask questions like: If  the box is airtight, how does the cat 
breathe? If the box is not airtight, does the cat’s respiration 
interact with the outside world? Doesn’t that ruin the experiment? 
How do you calibrate the geiger counter? Since hydrocyanic 



Undecidability	 The Perl Review 4.2

22 • Spring 2008	 www.theperlreview.com

acid remains liquid at room temperature, is it really the right 
choice? Isn’t the bit with the hammer and the glass flask a bit 
Rube Goldbergish? Shouldn’t you avoid having to deal with 
broken glass? And what about the SPCA? Asking any of these 
questions is a sign that you’ve missed the point.

A thought problem can have major implementation issues 
and still work as a thought problem, as long as in principle it 
could be done. In fact, the difficulties from a practical point 
of view could be insuperable, and the thought problem will be 
none the worse. A thought problem can be also be far-fetched, 
grotesque and a very unreasonable thing to do.

n The Heath Robinson Programming Foundation------
Let’s suppose the Heath Robinson Programming Foundation 
(HRPF) recognizes Perl as its official language and decides to 
put its vast financial resources to work on improving what’s 
available on CPAN. The first thing it decides it needs is an 
infinite loop detector.

The HRPF decides to hold a contest, with a handsome prize 
to be awarded to the best implementation of such a detector. 
The HRPF board wants the submissions culled before it picks 
finalists. I’m offered an insultingly small grant to check that the 
infinite loop detectors work as specified in the contest rules. 
The times being what they are, I decide to take the offer.

I’ve reserved Acme::Halt on the Comprehensive Perl Archive 
Network (CPAN). The rules require that the Acme::Halt 
module contain a function named halt. The first argument 
to halt is a code reference. It’s the required argument. The 
remaining arguments are optional, and are treated as arguments 
to use when halt dereferences the code reference.

The function referenced by the first argument, with the 
arguments to Acme::Halt::halt passed on to it, is the test 
case. For example, when the call to Acme::Halt::halt is:
Acme::Halt::halt(\&my_function, 

  42, 91, \*STDERR)

then the test case is my_function with the rest of the 
arguments:

my_function(42, 91, \*STDERR)

halt returns 1 if  the test case halts, and it returns 0 if  the 
test case runs forever. There’s no requirement that halt actually 
run its test case. It may run it partially or not at all. There’s no 
formal ban on halt running the test case completely, but halt 
must always return a result, and it can’t do that if  it tries to 
run an infinite loop to the end. At least sometimes, halt must 
analyze its test case without running it to completion.

The test case has to follow these rules. It must:

have no side effects•	
be completely deterministic•	
have no dependency on outside data other than •	

its arguments

I might object that these restrictions turn the hard problem 
of finding infinite loops into three other problems, each one 
of which is even harder than the original problem. Bear in 
mind two things: a thought problem does not have to be a 
reasonable thing for anyone to want to do, and the HRPF has 
a lot of money to hand out.

n On to work--------------------------------------------------------
I’m expected to automate the process of checking entrants to 
the HRPF Infinite Loop Detector Contest. To get the first sub-
pittance of my grant I need to submit my test plan with my Perl 
code. The result of my efforts is the code in Listing 1. The test 
case it uses is the function I have imaginatively named test_
case, called with a reference to itself as its only argument.

My code doesn’t seem to work right. I’ve already run through 
the money I expect from the grant, and I’ve got to submit 
something if  I’m to have any hope of paying the bills when 
they come.

Making my best attempt, I analyze the behavior of my test 
program. Table 1 shows what I find.

halt() re-
turns:

What halt() 
reports (line 7)

What actually 
happens (line 
26)

0 loops halts
1 halts loops

Table 1: Behavior of test_case(\&test_case)

In other words, whatever Acme::Halt::halt(\&test_
case, \&test_case) says that test_case(\&test_case) 
is doing, it is actually doing the opposite. When the result 
of test says it should halt, the actual test case loops forever. 
When the result of test says it should loop forever, the actual 
test case halts.

I work out the details for the 91st time. Here’s what I see.

Acme::Halt::halt returns 0
Line 1 includes the Acme::Halt package. My test 
case, calling a routine named test_case with a ref-
erence to itself as its only argument, occurs at line 26.

test_case shifts off its argument (line 6), which is a code 
reference to itself. test_case then calls Acme::Halt::halt 
(line 7), passing its own argument on twice. The call to 
Acme::Halt::halt at line 7 therefore amounts to a direct 
call to halt using the same reference as the first and second 
arguments:

Acme::Halt::halt(\&test_case, \&test_case)

What does Acme::Halt::halt return? I’m going to 
analyze both cases. I’ll start with the simplest. Suppose 
Acme::Halt::halt returns 0.



The Perl Review 4.2� Undecidability

www.theperlreview.com	 Spring 2008 • 23

As noted in Table 1, If Acme::Halt::halt(\&test_case, 
\&test_case) returns 0, Acme::Halt::halt is saying that 
test_case calling itself does not halt; it runs forever.

As we can see from line 7, the 0 return from Acme::Halt::halt 
also means we that we will return out of test_case. And that 
means we execute this die statement at line 27:

die('non-existent infinite loop reported by 
Acme::Halt::halt()');

As my error message reports, there’s a problem. At line 7 
Acme::Halt::halt reported that test_case(\&test_
case, \&test_case) runs forever. But at line 26 it did 
not run forever. As noted in Table 1, what is reported at line 7 
contradicts what happens at line 26.

What to do about it? I decide to defer my decision until I’ve 
run through test_case again, this time seeing what happens 
if  Acme::Halt::halt returns 1.

Acme::Halt::halt returns 1
We run test_case again. Nothing is different until we 

hit line 7. We looked at what happens if  Acme::Halt::halt 
returns 0, this time let’s look at what happens if  the return 
value of Acme::Halt::halt is 1. Here goes.

First off, if  Acme::Halt::halt(\&test_case, 
\&test_case) returns 1, that means line 7 is saying that 
test_case(\&test_case) halts. In other words test_
case(\&test_case) does not run forever.

A return of 1 from Acme::Halt::halt also means the 
return on line 7 does not get executed and I fall through to line 
13. As I can easily see, lines 13 through 19 are an infinite loop. 
Line 21 will never be reached. test_case(\&test_case) 
will never return.

Line 30 will also never be reached. In fact, I’ll never leave 
the test_case(\&test_case) call in line 26.

The situation is  as noted in Table 1. At l ine 26 
test_case(\&test_case) loops forever. At line 7, 
Acme::Halt::halt says that test_case(\&test_case) 

Listing 1: Test program for the HRPF Infinite Loop Detector Contest

 1   use Acme::Halt;
 2
 3   # A routine to bust the fraudulent claimants
 4   sub test_case {
 5
 6	     my $arg = shift;
 7	     return 0 if Acme::Halt::halt($arg, $arg) == 0;
 8
 9	     # I don't reach this point unless there's no infinite
10	     # loop according to Acme::Halt::halt
11
12	     # loop forever
13	     my $threshold = 1024;
14	     while (++$i) {
15	         if ($i > $threshold) {
16	             $threshold *= 2;
17	             warn q{if there's no infinite loop, why haven't I finished?};
18	         }
19	     }
20
21	     # NOTREACHED
22
23  }
24
25  # What does this routine do, if Acme::Halt::halt detects infinite loops?
26  if (not test_case(\&test_case)) {
27      die('non-existent infinite loop reported by Acme::Halt::halt()');
28  }
29
30  # NOTREACHED



Undecidability	 The Perl Review 4.2

24 • Spring 2008	 www.theperlreview.com

does not loop forever. Again, lines 7 and 26 contradict each 
other. As a test program, my code is a failure. I wonder how 
to fix it. I’m awake, watching early morning TV, when an idea 
occurs to me. 

n Desperate men do desperate things---------------------
Mathematicians often turn statements of non-existence 
into statement about existence and work backwards. They 
show the existence of something creates a contradiction. 
That contradiction proves the thing never really existed.

In the pure form in which mathematicians do this kind of 
reasoning. It seems backwards, but we use this sort of logic all 
the time. Take the guy with the sure-fire investment scheme on 
TV. If it was that good, we say, he wouldn’t be buying TV time 
to tell people. He’d tell a few people at most, invest his and 
their money, and get rich, all the time going to great lengths 
to keep the secret. It’s got to be a scam, we say. Our reasoning 
went like this:

Assume•	  A: the scheme in the infomercial is a 
sure-fire money maker.

If A, then B•	 : if  it was a sure-fire money-
making scheme, the people who knew about it 
would keep it a secret.

Not B•	 : they are not keeping it a secret.
Therefore, not A•	 : It is not a sure-fire money-

making scheme.

This pattern occurs a lot in proofs:

Assume A.  
If A, then B.  
Not B.
Therefore, not A.

That’s called a reduction to absurdity and math would 
be impossible without it. I assume something, then create a 
contradiction. Using that contradiction, I prove that the thing 
I assumed is not right.

In my late night TV meditation, Assumption A is that I’m 
watching a sure-fire money making scheme. Contradiction B 
is the observation that people keep sure-fire money-making 
schemes secret.

n My problem solved--------------------------------------------
I’m laying back, basking in my immunity to the lure of late night 
scams when the solution to my halting investigations occurs to me.

I’ve checked my HRPF Contest Entry test program a thousand 
times, so I know it all works, and that my test case satisfies 
the restrictions. But, I realize, there is one part of it that I do 
not know works. I don’t know that the Acme::Halt::halt 
program works as assumed.

So the situation comes down to: if (A) Acme::Halt::halt 
finds infinite loops, then (B) my test program detects them in my test 
case. But I also know: (Not B) My test program does not detect 
infinite loops in my test case.

I realize that if  I make “Acme::Halt::halt finds infinite 
loops” my Assumption A, and “test program detects loops in my 
test case” my Contradiction B, and plug these into the formula 
for a reduction to absurdity, then I get this:

Assume A•	 : Assume that Acme::Halt::halt 
finds infinite loops.

If A, then B•	 : If  Acme::Halt::halt finds 
infinite loops, the test program finds them in its 
test case, test_case(\&test_case).

Not B•	 : Table 1 shows the the test program will 
not find infinite loops in the test case.

Therefore, not A•	 : Acme::Halt::halt does 
not find infinite loops.

In this reasoning, the only assumption I made about 
Acme::Halt::halt, was that it obeys the restrictions imposed 
by the contest. So the logic above is valid for all possible contest 
entries—I don’t even have to actually test them. No valid contest 
entry could possibly qualify as a finalist.

n My letter to the HRPF-----------------------------------------
In drafting up my letter to the HRPF telling them that there can-
not possibly be a winning entrant to their contest, I point out 
that they could revise the contest. For example, it is obvious that 
a Perl script to simply output a message does not run forever:

say "goodnight, Gracie"

I could write a program that figures that out. A program 
could  also figure out this loops forever:

for (;;) { say "I'm bored." }

Programs to detect infinite loops can exist. All I’ve proved 
is that the general problem of finding infinite loops cannot 
be solved. It might be possible to write a module that finds a 
lot of infinite loops. A module that detects 90%, or even 50%, 
of all infinite loops might still be useful. It’s just that such a 
module will have to have some kind of failure rate. Perhaps it 
won’t detect all infinite loops. Perhaps it will detect all infinite 
loops, but at the price of reporting false positives—infinite 
loops in code which doesn’t have them.

I go on, in my letter to the HRPF, to say that actually, a 
determination that a contest is unwinnable amounts to a 
winning entry. So in addition to the pittance I was promised for 
qualifying entrants to the HRPF Infinite Loop Detector Contest 
I’d like the handsome sum they promised as first prize.

n Laying it on thicker--------------------------------------------
The HRPF Infinite Loop Contest entries did not have to 

work for arbitrary Perl functions. Those with side effects, those 
with dependences on the outside other than their arguments, 
and those which were non-deterministic, were excluded. What 
happens to the proof if  they are considered?



The Perl Review 4.2� Undecidability

www.theperlreview.com	 Spring 2008 • 25

All those factors were excluded because they made the 
infinite loop problem even harder to decide. Since the infinite 
loop problem is undecidable even without those functions in 
the mix, I can be sure it’s not decidable if  their behavior needs 
to be decided as well.

In fact, I tell the HRPF board that these restrictions forced 
the proof to be especially strong—forced it to show that 
undecidability is not limited to situations which involve 
randomness, side effects, or outside dependencies. It shows 
their brilliance in framing the contest the way they did. On 
the same page, I include the address to which they can send 
the check for first prize.

Does the HRPF, overwhelmed with pride and gratitude, give me 
First Prize? I’ll leave that to your imagination. Thought problems 
can be far-fetched, but there are limits to everything.

n In defense of the halting problem------------------------
Mathematicians almost always prove a problem is undecidable 
by reducing it to the Halting Problem. The Halting Problem 
has tradition behind it. and infinite loops relate reasonably 
well to real-life computing. But mathematicians often pretend 
they don’t care about real life. They also use those horribly 
klunky Turing machines, with their read heads and squares 
marked on infinite length tapes. Is it because Theory of Com-
putation professors are elitist jerks, focused on irrelevancies? 
That is certainly true of many of them, but it’s not the real story.

When Turing formulated the Halting Problem, electronic 
computers did not exist. The term “computer” usually referred 
to a woman. A lot has changed since then. But do we really 
understand the central issues of our field so much better than 
Turing? Fifty years from now our models of computing will look 
as klunky as Turing’s tapes and read heads. When it comes to 
thinking out the issues that will remain issues over the decades, 
current technology is not clearly superior.

Turing knew his physical technology could be superseded, 
something some of us perhaps forget about our own technology. 
Turing knew he was building ideas, and he built ideas that 
have lasted. Until we need a model of computing for which 
Turing machines and the Halting Problem aren’t adequate, 
why change?

n Conclusion-------------------------------------------------------
In this article I presented a proof of the Halting Problem using 
Perl as its notation. It required looking at Perl in a different 
way—as a framework for a thought problem, rather than as a 
way of getting a job done. In particular, the code I presented 
didn't accomplish its goal within the thought problem, and 
it called a function whose existence was doubtful. The proof 
turned on showing that everything else about the code worked 
fine, so that the assumption that the function existed was the 
weak link. Since the only thing I'd assumed about the function 
was that it was callable from Perl and that it solved the Halting 
Problem, no Perl function to solve the Halting Problem can exist.

This means the Halting Problem is undecidable in the 
Perl context. In fact it's undecidable for any modern general-
purpose computer language. The Halting Problem is not the 

only undecidable problem. You may be surprised to learn how 
many useful questions have undecidable answers.  The second 
article in this series will present the extremely useful Rice's 
Theorem, a fast, easy way of spotting undecidable problems. 
Rice's Theorem is not well-known among working programmers, 
but it should be.

As I said at the beginning, I began thinking about this issue 
while reading Adam Kennedy's PPI module. I was looking at a 
potential application for a parser generator. Parsing Perl 5 looked 
like it might be a challenge. I ran across Adam's conjecture that 
Perl 5 parses were in fact undecidable, and his hint at how to 
prove that. Any number of people in the Perl community know 
enough math to have formalized the proof that Adam outlined. 
Of this number, I was the first to be too dim to see immediately 
that Adam was right. The third and last article will contain that 
formal proof, again in Perl 5 notation.

n References--------------------------------------------------------
“Perl Cannot Be Parsed: A Formal Proof ”, my original Perl-
monks post on this topic:
        http://www.perlmonks.org/?node_id=663393

The Halting Problem: 
        http://en.wikipedia.org/wiki/Halting_problem

Reduction to absurdity:
        http://en.wikipedia.org/wiki/Reductio_ad_absurdum

Adam Kennedy’s PPI module:
        http://search.cpan.org/dist/PPI

n About the author------------------------------------------------
Jeffrey Kegler has been using Perl since 1987. At the time, 
he’d bid a fixed-price gig and took a chance that the newly-
released Perl 1 would be better than shell scripting. Betting 
on Larry Wall proved to be a good move. Jeffrey is the author 
the of Test::Weaken and Parse::Marpa CPAN modules.

Jeffrey is a published mathematician, has a BS and an MSCS 
from Yale, and was a Lecturer in the Yale Medical School. In 
2007 he published his first novel, The God Proof. It centers on 
a little known part of Kurt Gödel’s work—his effort to prove 
God’s existence. Gödel worked out his proof in two notebooks: 
notebooks which were missing from his effects when they were 
cataloged after this death. The God Proof begins with Gödel’s lost 
notebooks reappearing in a coastal town in modern California. 
It’s available as a free download: http://www.lulu.com/content/933192. 
You can purchase print copies at Amazon: http://www.amazon.
com/God-Proof-Jeffrey-Kegler/dp/1434807355.


