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COMPUTING IN THE HOME: SHIFTS IN 
THE TIME ALLOCATION PATTERNS 
OF HOUSEHOLDS 
In Vitalari, Venkatesh, and Gronhaug’s (Commun. 
ACM 28, S(May :1965), 512-522) discussions of Rank- 
ings of Computer LJse, they present data showing 
primary computer use as made up of 26 percent for 
business, 24 percent for word processing, 24 percent 
hobby, and 22 percent for entertainment. They spec- 
ulate that if word processing is included, work at 
home is probably a primary use for 45 percent of the 
respondents. 

Similarly, in their Concluding Remarks the au- 
thors state “The study also indicates that business 
and word processing are dominant uses for home 
computers. If this i:ndicates a trend, the household of 
the future may be the site of more task-oriented 
behaviors. . .” 

This seems a rather bold interpretation of the fig- 
ures-even allowing the 5 percent for finance use to 
come under business and word processing use; the 
figures might just as well have been used to express 
amazement at the extent to which home computers 
are used for entertainment. 

It would be interlesting to discover the relative im- 
portance of the secondary use and the contributions 
made by business, .word processing, and the other 
activities and to determine whether or not it is the 
task-oriented use which contributes most to the ap- 
parent changes in family behavior. This is a stimu- 
lating article and hopefully the authors will be able 
to pursue some of the issues raised. 

Robert lsbister 
Computer Unit 
University of Stirling 
Scotland 

EXTENDED USE OF NULL PRODUCTIONS 
IN LR(l) PARSER APPLICATIONS 
In Finn’s article (Commun. ACM 28, S(Sept. 1985), 
961-972), it should be noted that the necessity of 
adding null productions is due to a limitation in the 
table generator. The need disappears if actions are 
given the status of tokens and can therefore appear 
directly in the body of productions, as is done in the 
Hughes Translation Table Generator (TTG). Addi- 
tional productions are needed only for actions in- 

voked from multiple points in the grammar, and 
those could be removed from the completed tables 
as an optimization. 

Inclusion of actions as tokens raises the potential 
for obscuring conflicts or actually altering the gram- 
mar. Such problems occur less often than might be 
expected, however. They are checked by giving ac- 
tion tokens lower priority than string tokens and by 
informing TTG which actions consume or test the 
input string. 

Action tokens can even be used to improve per- 
formance of the parser by eliminating most reduc- 
tions. Reductions often impose a significant time and 
space penalty compared to shifts and combined 
shift-reduce operations, at least when using TTG ta- 
bles. Thus, I frequently append the token and do 
nothing to specific productions of a known LR(l) 
grammar in order to convert reductions to shift-re- 
duce operations. 

In our environment, it is convenient to define 
rather fine-grained actions which require frequent 
regeneration of tables. However, one could define 
tokens corresponding directly to the null produc- 
tions of the example grammar, so details may be 
altered without altering the tables. 

George K. Tucker 
Electra-Optical and Data Systems Group 
Strategic Systems Division 
Hughes Aircraft Company 
El Segundo, CA 90245 

A POLYNOMIAL TIME GENERATOR FOR 
MINIMAL PERFECT HASH FUNCTIONS 
The perfect hashing algorithm in Sager’s recent arti- 
cle (Commun. ACM 28, S(May 1985), 523-532) suffers 
from a theoretical defect which can be shown to be 
inherent to all perfect hashing algorithms, and 
which I believe is also a practical impediment to 
perfect hashing. The complexity of the hash func- 
tion generated by his algorithm grows rapidly with 
the number of keys to be hashed. That this is neces- 
sary in any perfect hash where the keys do not have 
an ordinal encoded into them can be shown as fol- 
lows. 

If N keys are to be hashed into M addresses, every 
possible set of N keys must have its own hashing 
function. Consider a computer with p operations 
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whose maximum word size for arithmetic is w. The 
number of executions of operations, t, is given by 

(p2W)’ = N! 

which, solved for t, yields 

t = O(N log N). 

Practical search algorithms which run in O(log N) 
time are well known, so that perfect hashing 
emerges as clearly suboptimal in large cases. If prac- 
tical considerations are taken into account, along 
with the availability of good alternative schemes for 
small sets of keys, I suspect there are no cases where 
perfect hashing proves worthwhile. 

We can weaken the insistence that the keys con- 
vey no information about an ordinality to a large 
degree without making perfect hashing more practi- 
cal. Consider allowing the M addresses to have their 
contents in whatever order is convenient for the 
hash, and to be predictably distributed-fixed length 
records beginning at a known location, for example. 
If we further allow a predictable distribution in the 
keys, such as in the first N integers, clearly a perfect 
hash whose function runs in constant time is easily 
found. However, given a set of keys with a largely 
random distribution, such as words in a lexicon, an 
ordinality cannot be deduced. Cases between the 
two extremes of predictable and random distribution 
fall into the class of interpolation searches, for 
which practical results have been unexciting so far. 
And, of course, other theoretically optimal O(log N) 
search routines are well known and widely used. 

It may seem paradoxical that no amount of time 
devoted to preprocessing a fixed set of keys in this 
way results in any saving. The problem lies in en- 
coding their distribution into a hash function, which 
must take into account all possible permutations of 
keys, while the actual search need only look at those 
keys actually in the data. Recently some articles on 
perfect hashing have summaries in the form of 
“morals” drawn from the results presented. I would 
offer this: Finding something can be a lot faster than 
figuring out where it is. 

Jeffrey Kegler 
Lake Anne Software 
1600 Chimney House Road 
Reston, VA 22090 

AUTHORS RESPONSE 
I am not quite sure that I understand what Mr. Keg- 
ler is trying to say but he appears to have missed the 
point of my article. His comment that “every possi- 
ble set of N keys must have its own hashing func- 
tion” appears wide of the mark. It is not every set but 
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some particular set that interests us. I would like to 
refer Mr. Kegler to the technical report [2] in which 
a minimal perfect hash function, MPHF, for a partic- 
ular set-the 256 most common words in the English 
language, is given. 

The generating function has a worst-case time com- 
plexity exponential in N but an expected time com- 
plexity no worse than proportional to N6. The gener- 
ated function has constant time complexity provided 
we hold the parameters ho, h,, and h, constant and 
that we consider that the operations +, mod, and [ ] 
are performed in constant time. This should be clear 
from the form of the MPHF generated, (h,(w) + 
g[hWl + g[Mw)l) mod N. 

There appears to be a practical limit to the size of 
the sets for which the mincycle algorithm can suc- 
cessfully generate MPHF’s. It is uncertain exactly 
where this limit lies. At the time of publication of 
my article, I felt that this limit was probably around 
512, but a recent study by Hou[l] sheds some fur- 
ther light on this question. The nature and existence 
of this practical limit is, I believe, still an open ques- 
tion. 

In any case for medium size static sets, say be- 
tween 32 and 512, I know of no more practical 
search method than MPHF’s as generated by the 
mincycle algorithm. Should Mr. Kegler or anyone 
else have information to the contrary, I would be 
very glad to hear about it. 

Thomas 1. Sager 
Department of Computer Science 
University of Missouri-Rolla 
Rolla. MO 65401 
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THE P2 ALGORITHM FOR DYNAMIt 
CALCULATION OF QUANTILES AND 
HISTOGRAMS WITHOUT STORING 
OBSERVATIONS 
Jain and Chlamtac’s P* algorithms for the calculation 
of quantiles and complete histograms (Commun. ACM 
28, 10 (Oct. 1985), 1076-1085) are valuable tools for 
simulation studies or performance measurement. 
However, applying the histogram algorithm to data 
about which little or nothing is known can yield 
extremely misleading results. The authors warn that 
the percentile algorithm should not be used to esti- 
mate quantiles which are close to discontinuities 
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TABLE I. Estimates of Quantiles From 650 Bernoulli Trials. The 
estimates of the O&0.6, and 0.7 quantiles are far from numbers 

which occur in ihe data. 
-- 

P 
value 

~- 
0.0 
0.1 4.921 E-l 3 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1 .o 

since such estimates will nat.urally be extremely un- 
stable: I wish to point out that a similar caveat ap- 
plies to the histogram algorithm. 

If one applies the histogram algorithm to data from 
a discrete distribution, several quantiles may be esti- 
mated incorrectly. Unlike the method of storing and 
sorting the observations, which at worst yields un- 
stable estimates, the P’ algorithms tend to interpo- 
late values that never appear in the data. The prob- 
lem is worst when the number of possible data val- 
ues is small relative to the number of cells in the 
histogram. For example, a l&cell histogram pro- 
duced from 650 Bernoulli trials (0 or 1, each with 
probability 0.5) sometimes produced as many as 
three distinct extraneous quantiles [Table I). 

To safely discover the most about data whose dis- 
tribution is unknown, one could start by counting 
the frequencies of individual values. If the number 
of values exceeds the number of cells in the desired 
histogram, the data could be fed into the P2 algo- 
rithm, which could then be used for the rest of the 
analysis. 

David Gladstein 
1119 Governor Winthrop Road 
Somerville, MA 02145 

AUTHORS’ RESPlONSE 
We agree. Our warning about discrete distributions 
applies to both percentiles and histogram algorithms. 
Thanks for pointing it out explicitly. 

Raj Jain 
Digital Equipment Corporation 
550 King Street (LKGl-2/Al9) 
Littleton, MA 01460-1289 

STRUCTURED TOOLS AND 
CONDITIONAL LOGIC: 
AN EMPIRICAL INVESTIGATION 
I read Vessey and Weber’s article (Commun. ACM 29, 
1 (Jan. 1986). 48-57) with interest. When I had fin- 
ished reading the article, I found myself with a nag- 
ging problem: how much where the results influ- 
enced by the choice of COBOL as the language in 
which the final code was written? 

This language choice was reflected in the form of 
the structured English as well. Suppose that they 
had allowed the use of some form of “case” state- 
ment, would this have affected their results? I sus- 
pect it would have, because my experience has been 
that multiway selection is particularly difficult in 
languages that do not have a “case” statement. 

1. P. E. Hodgson 
Department of Mathematics 

and Computer Science 
Saint Joseph’s University 
Philadelphia, PA 19131 

AUTHOR’S RESPONSE 
We examined the performance of subjects in 
designing and coding logic for nested conditionals. 
Nested conditionals can be coded using the “case” 
construct only by using Boolean operators, that is. 
even a language that has a “case” construct requires 
the use of Boolean operators. As noted in the paper, 
Green, Sime. and Fitter [l] report difficulties in 
using Boolean operators. We used the nested 
conditional construct because of the difficulties 
reported by those authors. 

It was essential to satisfy experimental conditions 
that subjects reproduce a standard format in their 
responses. Hence, our subjects were trained in using 
the nested conditional construct and all participants 
used that format in the experiment. 

Iris Vessey 
Department of Commerce 
University of Queensland 
St. Lucia, Queensland, Australia 4067 

Visiting at 
Graduate School of Business Administration 
University of Minnesota 
Minneapolis, MN 55455 
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