
Technical Correspondence
-

COMPUTING IN THE HOME: SHIFTS IN
THE TIME ALLOCATION PATTERNS
OF HOUSEHOLDS
In Vitalari, Venkatesh, and Gronhaug’s (Commun.
ACM 28, S(May :1965), 512-522) discussions of Rank-
ings of Computer LJse, they present data showing
primary computer use as made up of 26 percent for
business, 24 percent for word processing, 24 percent
hobby, and 22 percent for entertainment. They spec-
ulate that if word processing is included, work at
home is probably a primary use for 45 percent of the
respondents.

Similarly, in their Concluding Remarks the au-
thors state “The study also indicates that business
and word processing are dominant uses for home
computers. If this i:ndicates a trend, the household of
the future may be the site of more task-oriented
behaviors. . .”

This seems a rather bold interpretation of the fig-
ures-even allowing the 5 percent for finance use to
come under business and word processing use; the
figures might just as well have been used to express
amazement at the extent to which home computers
are used for entertainment.

It would be interlesting to discover the relative im-
portance of the secondary use and the contributions
made by business, .word processing, and the other
activities and to determine whether or not it is the
task-oriented use which contributes most to the ap-
parent changes in family behavior. This is a stimu-
lating article and hopefully the authors will be able
to pursue some of the issues raised.

Robert lsbister
Computer Unit
University of Stirling
Scotland

EXTENDED USE OF NULL PRODUCTIONS
IN LR(l) PARSER APPLICATIONS
In Finn’s article (Commun. ACM 28, S(Sept. 1985),
961-972), it should be noted that the necessity of
adding null productions is due to a limitation in the
table generator. The need disappears if actions are
given the status of tokens and can therefore appear
directly in the body of productions, as is done in the
Hughes Translation Table Generator (TTG). Addi-
tional productions are needed only for actions in-

voked from multiple points in the grammar, and
those could be removed from the completed tables
as an optimization.

Inclusion of actions as tokens raises the potential
for obscuring conflicts or actually altering the gram-
mar. Such problems occur less often than might be
expected, however. They are checked by giving ac-
tion tokens lower priority than string tokens and by
informing TTG which actions consume or test the
input string.

Action tokens can even be used to improve per-
formance of the parser by eliminating most reduc-
tions. Reductions often impose a significant time and
space penalty compared to shifts and combined
shift-reduce operations, at least when using TTG ta-
bles. Thus, I frequently append the token and do
nothing to specific productions of a known LR(l)
grammar in order to convert reductions to shift-re-
duce operations.

In our environment, it is convenient to define
rather fine-grained actions which require frequent
regeneration of tables. However, one could define
tokens corresponding directly to the null produc-
tions of the example grammar, so details may be
altered without altering the tables.

George K. Tucker
Electra-Optical and Data Systems Group
Strategic Systems Division
Hughes Aircraft Company
El Segundo, CA 90245

A POLYNOMIAL TIME GENERATOR FOR
MINIMAL PERFECT HASH FUNCTIONS
The perfect hashing algorithm in Sager’s recent arti-
cle (Commun. ACM 28, S(May 1985), 523-532) suffers
from a theoretical defect which can be shown to be
inherent to all perfect hashing algorithms, and
which I believe is also a practical impediment to
perfect hashing. The complexity of the hash func-
tion generated by his algorithm grows rapidly with
the number of keys to be hashed. That this is neces-
sary in any perfect hash where the keys do not have
an ordinal encoded into them can be shown as fol-
lows.

If N keys are to be hashed into M addresses, every
possible set of N keys must have its own hashing
function. Consider a computer with p operations

556 Communications of the ACM]une 1986 Volume 29 Number 6

whose maximum word size for arithmetic is w. The
number of executions of operations, t, is given by

(p2W)’ = N!

which, solved for t, yields

t = O(N log N).

Practical search algorithms which run in O(log N)
time are well known, so that perfect hashing
emerges as clearly suboptimal in large cases. If prac-
tical considerations are taken into account, along
with the availability of good alternative schemes for
small sets of keys, I suspect there are no cases where
perfect hashing proves worthwhile.

We can weaken the insistence that the keys con-
vey no information about an ordinality to a large
degree without making perfect hashing more practi-
cal. Consider allowing the M addresses to have their
contents in whatever order is convenient for the
hash, and to be predictably distributed-fixed length
records beginning at a known location, for example.
If we further allow a predictable distribution in the
keys, such as in the first N integers, clearly a perfect
hash whose function runs in constant time is easily
found. However, given a set of keys with a largely
random distribution, such as words in a lexicon, an
ordinality cannot be deduced. Cases between the
two extremes of predictable and random distribution
fall into the class of interpolation searches, for
which practical results have been unexciting so far.
And, of course, other theoretically optimal O(log N)
search routines are well known and widely used.

It may seem paradoxical that no amount of time
devoted to preprocessing a fixed set of keys in this
way results in any saving. The problem lies in en-
coding their distribution into a hash function, which
must take into account all possible permutations of
keys, while the actual search need only look at those
keys actually in the data. Recently some articles on
perfect hashing have summaries in the form of
“morals” drawn from the results presented. I would
offer this: Finding something can be a lot faster than
figuring out where it is.

Jeffrey Kegler
Lake Anne Software
1600 Chimney House Road
Reston, VA 22090

AUTHORS RESPONSE
I am not quite sure that I understand what Mr. Keg-
ler is trying to say but he appears to have missed the
point of my article. His comment that “every possi-
ble set of N keys must have its own hashing func-
tion” appears wide of the mark. It is not every set but

Technical Correspondence

some particular set that interests us. I would like to
refer Mr. Kegler to the technical report [2] in which
a minimal perfect hash function, MPHF, for a partic-
ular set-the 256 most common words in the English
language, is given.

The generating function has a worst-case time com-
plexity exponential in N but an expected time com-
plexity no worse than proportional to N6. The gener-
ated function has constant time complexity provided
we hold the parameters ho, h,, and h, constant and
that we consider that the operations +, mod, and []
are performed in constant time. This should be clear
from the form of the MPHF generated, (h,(w) +
g[hWl + g[Mw)l) mod N.

There appears to be a practical limit to the size of
the sets for which the mincycle algorithm can suc-
cessfully generate MPHF’s. It is uncertain exactly
where this limit lies. At the time of publication of
my article, I felt that this limit was probably around
512, but a recent study by Hou[l] sheds some fur-
ther light on this question. The nature and existence
of this practical limit is, I believe, still an open ques-
tion.

In any case for medium size static sets, say be-
tween 32 and 512, I know of no more practical
search method than MPHF’s as generated by the
mincycle algorithm. Should Mr. Kegler or anyone
else have information to the contrary, I would be
very glad to hear about it.

Thomas 1. Sager
Department of Computer Science
University of Missouri-Rolla
Rolla. MO 65401

REFERENCES
1. Hou, P.-P., and Sager, T.J. A Monte Carlo analysis of the mincycle

algorithm for generating minimal perfect hash functions. Tech. Rep.
CSc-85-3, Univ. of Missouri, Rolla. 1985.

2. Sager, T.J. A new method for generating minimal perfect hash func-
tions. Tech. Rep. CSc-84-15. Univ. of Missouri, Rolla, 1984.

THE P2 ALGORITHM FOR DYNAMIt
CALCULATION OF QUANTILES AND
HISTOGRAMS WITHOUT STORING
OBSERVATIONS
Jain and Chlamtac’s P* algorithms for the calculation
of quantiles and complete histograms (Commun. ACM
28, 10 (Oct. 1985), 1076-1085) are valuable tools for
simulation studies or performance measurement.
However, applying the histogram algorithm to data
about which little or nothing is known can yield
extremely misleading results. The authors warn that
the percentile algorithm should not be used to esti-
mate quantiles which are close to discontinuities

June 1986 Volume 29 Number 6 Communications of the ACM 557

Tec/~r~ical Corresporltlerlce

TABLE I. Estimates of Quantiles From 650 Bernoulli Trials. The
estimates of the O&0.6, and 0.7 quantiles are far from numbers

which occur in ihe data.
--

P
value

~-
0.0
0.1 4.921 E-l 3
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1 .o

since such estimates will nat.urally be extremely un-
stable: I wish to point out that a similar caveat ap-
plies to the histogram algorithm.

If one applies the histogram algorithm to data from
a discrete distribution, several quantiles may be esti-
mated incorrectly. Unlike the method of storing and
sorting the observations, which at worst yields un-
stable estimates, the P’ algorithms tend to interpo-
late values that never appear in the data. The prob-
lem is worst when the number of possible data val-
ues is small relative to the number of cells in the
histogram. For example, a l&cell histogram pro-
duced from 650 Bernoulli trials (0 or 1, each with
probability 0.5) sometimes produced as many as
three distinct extraneous quantiles [Table I).

To safely discover the most about data whose dis-
tribution is unknown, one could start by counting
the frequencies of individual values. If the number
of values exceeds the number of cells in the desired
histogram, the data could be fed into the P2 algo-
rithm, which could then be used for the rest of the
analysis.

David Gladstein
1119 Governor Winthrop Road
Somerville, MA 02145

AUTHORS’ RESPlONSE
We agree. Our warning about discrete distributions
applies to both percentiles and histogram algorithms.
Thanks for pointing it out explicitly.

Raj Jain
Digital Equipment Corporation
550 King Street (LKGl-2/Al9)
Littleton, MA 01460-1289

STRUCTURED TOOLS AND
CONDITIONAL LOGIC:
AN EMPIRICAL INVESTIGATION
I read Vessey and Weber’s article (Commun. ACM 29,
1 (Jan. 1986). 48-57) with interest. When I had fin-
ished reading the article, I found myself with a nag-
ging problem: how much where the results influ-
enced by the choice of COBOL as the language in
which the final code was written?

This language choice was reflected in the form of
the structured English as well. Suppose that they
had allowed the use of some form of “case” state-
ment, would this have affected their results? I sus-
pect it would have, because my experience has been
that multiway selection is particularly difficult in
languages that do not have a “case” statement.

1. P. E. Hodgson
Department of Mathematics

and Computer Science
Saint Joseph’s University
Philadelphia, PA 19131

AUTHOR’S RESPONSE
We examined the performance of subjects in
designing and coding logic for nested conditionals.
Nested conditionals can be coded using the “case”
construct only by using Boolean operators, that is.
even a language that has a “case” construct requires
the use of Boolean operators. As noted in the paper,
Green, Sime. and Fitter [l] report difficulties in
using Boolean operators. We used the nested
conditional construct because of the difficulties
reported by those authors.

It was essential to satisfy experimental conditions
that subjects reproduce a standard format in their
responses. Hence, our subjects were trained in using
the nested conditional construct and all participants
used that format in the experiment.

Iris Vessey
Department of Commerce
University of Queensland
St. Lucia, Queensland, Australia 4067

Visiting at
Graduate School of Business Administration
University of Minnesota
Minneapolis, MN 55455

REFERENCE
1. Green. T.R.G.. Sime. M.E.. and Fitter. M.I. The problems the pro-

rammer faces. E~~““““IK” 23. 9 (1980). 893-907.

558 Commurlicatiorls of the .4CM Iune 1986 Volume 29 Number 6

